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Abstract 
 

The number of devices connected to the Internet grows constantly. This information entity has been 

labeled the Internet of Things (IoT). One important aspect of this is the industrial applications, 

sometimes labeled the Industrial Internet of Things (IIoT). Collecting and analyzing the massive 

amounts of data that industry generates will only become more and more important as technology 

and the need for efficiency increase. 

Novotek is a company with long and extensive experience of industrial IT and automation. Together 

with their customer Quant Service they are launching a project for predictive maintenance. This aims 

to monitor several different industrial sites using an industrial platform and the IIoT framework. The 

monitoring will allow for tracking of machine status and maintenance needs from both near and afar.  

One of the sites for this project is a veneer production line for composite wood products. As a part of 

the monitoring and predictive maintenance project, this report looks at the possibility of using the 

ThingWorx IIoT platform’s analytics functionality to determine the need for maintenance of the 

cutting knife on a veneer lathe. The goal is to look at its uses for monitoring and predictive 

maintenance for this particular case but also as a general method. The process for this will be 

twofold. Since the project uses the IIoT framework one part is how to collect the data from the site 

and then passing it through the platform and to the analytics program. The second part is the 

machine learning and statistical methods and algorithms used to analyze the data for predictions. For 

benchmarking, it will be compared to another analytics product. 

The results of the project are not conclusive concerning the knife predictions. Development of the 

measurement setup is needed. The IIoT platform does however show potential in being used for the 

intended purpose. 
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Acronyms 
 

IoT – Internet of Things. Framework for connecting data generating devices via the Internet. 

IIoT – Industrial IoT. The industrial applications of IoT 

LVL – Laminated Veneer Lumber. A composite wood construction material. 

FFT – Fast Fourier Transform. A signal processing method. 

API – Application Programing Interface. A set of subroutine definitions, protocols, and tools for          

          building application software. 

ROC – Receiver Operating Characteristic. A measure of how well a machine learning algorithm can    

            predict true positive outcomes for a binary goal.  

MCC – Matthews Correlation Coefficient. A measure of how well a machine learning algorithm can    

            predict the outcome of binary goal.  

RMSE – Root Mean Square Error. A measure of the difference between the predicted and actual  

               values of the target of a predictive model. 

json – JavaScript Object Notation. A platform independent data format used in software 

            applications. Originally for JavaScript 

xml – Extensible Markup Language. A platform independent data format used in software 

            applications. 

csv – Comma separated value. File format for storing data in rows and columns. 

 

Data parameter acronyms 

TOTG – Total vibration acceleration. 

RESG – Stochastic part of TOTG. 

PERG – Periodic and stationary part of TOTG. 

TOTV – Total vibration velocity. 

RESV – Stochastic part of TOTV. 

PERV – Periodic and stationary part of TOTV. 

SPI – One quartile of the noise friction spectrum. Indexed 1 through 4.  
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1 Introduction 
 

1.1 Background 
The number of connected, data generating devices is growing constantly. These do not only connect 

more people, but also industrial machines to each other. This interconnectedness is believed to pave 

the way for smart factories and production systems that can make decisions for themselves. Add to 

this that almost half of all jobs today are predicted to disappear due to automation and it is not hard 

to imagine that another industrial revolution, Industry 4.0, is coming (Marr 2016).  

This rapid increase of data generating automated industry has created a need for both automated 

and remote process monitoring. Novotek has for over 30 years been a leading supplier of products 

and solutions to digitalize and streamline the manufacturing industry. Together with a customer that 

delivers third-part-maintenance, Novotek is now realizing a pilot project with a new platform for 

Industrial Internet of Things (IIoT). A part of this is to further develop the predictive maintenance of 

advanced processing machines.  

One of the sites that receive third-part-maintenance is a plywood and composite wood 

manufacturing plant. The knife that peels logs into veneer needs continuous maintenance in the 

form of sharpening and replacement several times per day. This project aims to evaluate if the 

current system for this can be optimized, or perhaps even be replaced, by a more efficient method. 

 

1.2 Research questions  
The aim of the project is two-fold. One is to investigate whether it is possible to detect when the 

peeling knife of a veneer lathe is dull by analyzing overall vibrations in the lathe machine. The second 

part is to evaluate generic tools for connecting industrial data producing devices and performing 

analytics on the data they generate. In other words, to evaluate an IIoT platform as a tool for process 

monitoring. 

The base requirement is to identify when the knife needs maintenance and notify the operator. To 

accomplish this, two things must be found in the data: 

A. When is the knife dull? 

B. What in the data signifies when the knife is starting to get dull?  

When the method is able to make predictions for the most basic maintenance suggestion, the next 

step is to optimize it. It should be able to monitor the data and advice on the optimal point for 

exchange or sharpening of the knife. This means finding a point before veneer quality is 

compromised but without halting the process too frequently.  

 

1.3 Delimitations 
This is not a true IoT solution or implementation. This is a study focusing on if the IoT framework and 

an IIoT platform can be used for Process Monitoring purposes. So, while the platform is used for 

passing data, the Analytics part of the platform will be the main focus for evaluation. 

Since the algorithms are already implemented in the analysis programs there will only be a short 

discussion on the algorithms used for the project. The intention is to give the reader some idea of 
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how the machine learning and statistical methods work.  For a comprehensive understanding, 

secondary sources are recommended.   

 There will only be a short discussion on wood working and vibration sensors. The goal is not to 

develop a monitoring method specifically for this process, but to investigate if an analysis tool of the 

type used in this study can be applied to an arbitrary problem. 

Documenting the aspects of the tools used is a large undertaking. Therefore, the description of the 

program used for comparison, called CSense, will be less detailed than the description of the 

ThingWorx platform, which is the main focus. 

 

1.4 Copyright and trademarks of companies and their products 
All of the products and product names mentioned in this thesis are the legal property of their 

respective companies. They are included here by permission.   
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2 Methodology  
The methods used for predictions and monitoring can be divided into two categories. One is 

statistical and machine learning algorithms implemented in the analytics program. These will be used 

to analyze the data for patterns in order to make a predictive model. The other part is programmatic 

methods used for data communication and categorization inside of the ThingWorx IIoT platform and 

the analytics program.  

To have some basis for comparison, another analytics program called CSense will also perform 

analysis on the data. The two analytics programs are somewhat different when it comes to purpose 

and implementation. Nevertheless, they are both employed for predictive analytics and this will 

establish a baseline for comparison. 

The approach to the task is to evaluate the methods for process monitoring analysis by using the 

veneer knife as a case study. The methods are to be: 

• Documented concerning general functionality. 
• Described concerning how they are applied to the task at hand. 
• Evaluated. Both for the case of the veneer knife but also as a general method. 
• Supplied with recommendations concerning which methods and tools are suitable for 

predictive maintenance. 

Chapters 3 through 7 deal with explaining the veneer machine, the sensors, the software used and 

the machine learning and statistical methods that are employed for analysis. The content of these 

chapters deal primarily with methodology and theory.  Results, discussion and conclusion is covered 

in chapters 8 through 10. 
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3 Veneer machine and sensors 
The information pertaining to the lathe, the veneer production line and the sensors all originate from 

talking to the engineers and operators involved in running the machine and performing the 

monitoring of the bearings and other machine parts. Information was also gathered during a visit to 

the production site. All material in this chapter originates from these correspondences and 

observations, unless otherwise specifically noted.  

 

3.1 Production line 
The veneer machine is part of a production line that produces Laminated Veneer Lumber (LVL), 

which is a type of composite wood product for all types of construction and which is made from 

several sheets of veneer (Canadian Wood Council 2016). 

The majority, 97 %, of the log material is spruce with the remaining 3 % being pine. The type of wood 

affects the process somewhat, but it is more a question of the logs being hardwood or softwood. 

Spruce and pine are sufficiently similar and the change of material does not affect the process very 

much for this particular case. 

The process is quite advanced. First, the logs, which have been pre-peeled of bark, are soaked in 

warm water for 8 hours to achieve the right temperature and hardness. Then they are conveyed to a 

queue for the lathe. Before entering the veneer lathe, the logs are scanned to determine diameter, 

needed round-up and how to cut to get the most amount of veneer out of them. After that they are 

inserted into the lathe that peels the logs into a long mat of veneer. This length of veneer is scanned 

for optimal cutting points for the “guillotine”, which cuts it into sheets of equal length. The scan also 

determines the moisture level and quality of the veneer and sorts the sheets accordingly. These piles 

are then transported by truck to another line where they are dried and subsequently glued into LVL. 

Once the logs are put on the conveyer all the steps in the peeling process are automated, with an 

operator overseeing the process from a control booth above the lathe.  

 

3.2 Lathe 
The peeling cycle in the lathe starts as soon as the log has been scanned and the residual of the 

previous log has been removed. Once inserted, the log is held in place at the ends by two spiked 

chucks which are inserted with force into the log, turning it into a rotating axis. The knife consists of a 

two-part blade, which is fixed to a separate frame and is controlled by a servomotor. The log rotates 

in a fixed position and the knife is moved towards the log to enable the peeling.  The peeling cycle 

can be divided into several states. Apart from insertion of a new log and emptying of the remainder 

of the old log, there is a round-up operation and a peeling operation. Round-up is when the log is 

peeled in a way to make it as uniformly cylindrical as possible. This allows for better veneer and the 

uniform shape makes the veneer calculations easier. After round-up is done the peeling starts. This 

peels the log into a long mat of veneer that exits the lathe on the other side. Once the leftover log is 

removed the cycle starts over. A complete cycle for one log takes about 12 seconds. 
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Figure 3.2.1: Lathe Knife Cutting Parameters with the letters indicating different gaps and angles. Important measures are 
clearance (or flank) angle, C, and knife gap, F. 

While the process is automated when it is up and running, any problems in the peeling as well as 

setting the parameters for the lathe is handled manually by the operator. The parameters for the 

cutting are primarily: (1) the rotational speed of the lathe, which is specified in veneer meters 

produced per minute for both round-up and peeling (usually the same speed), (2) the clearance-

angle (also referred to as the flank-angle in wood cutting literature (Astakhov 2010 p 68)) and its off-

set, and (3) the knife-gap and its counter-weight pressure bar. The clearance-angle is the angle 

formed between the knife’s cutting-edge plane and the vertical tangent of the log at the cutting 

point (Astakhov 2010 p 68), C in figure 3.2.1 (Lutz 1977 p 48). The clearance-angle is central to re-

sharpening and must be adjusted accordingly (Astakhov 2010 p 63). When the blade has been re-

sharpened or exchanged, the clearance-angle and offset must be reduced, since the blade is more 

brittle. For the same reason, the speed is also lowered when the knife has been sharpened or 

exchanged. Knife-gap is a measure of the horizontal distance between the knife tip and the pressure 

bar (Lutz 1977 p 63), F in figure 3.2.1. The size of the gap varies with the veneer thickness, and to a 

certain extent, the type of wood that is being peeled. A common measure is to set the gap to 80 % of 

the veneer thickness, though tests have shown that a smaller gap might be better (Lutz 1977 p 64), 

which is also the method used on the lathe in question for this report. The pressure bar is set to a 

counter-pressure against the veneer passing against the bar and out of the machine. All of these 

parameters are set by the operator, partly by routines based on tests and process experience but 

also according to the personal experience of the operator in question. This speaks to the craftsman-

like nature of the peeling process, which is controlled manually to a higher degree than the log pre-

processing and the veneer post-processing. Temperature is also a factor (Lutz 1977 p 65) and if the 

wood is to cold or to hot it can cause knife damage, veneer damage or production stops. This is part 

of the reason for why the logs are pretreated in hot water. 
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3.2.1 Production issues and maintenance 

  

 

Figure 3.2.2 Left chuck, marked with blue, and part of the knife, marked with red, after cleaning for sharpening. 

 

When there is a problem with the process the operator must notice this visually or by sound. 

Common problems are either spin-out or some issue with the knife. Spin-out is when the chucks 

(seen in figure 3.2.2) of the lathe start to dig into the log instead of rotating it. The operator must 

notice this by the lack of produced veneer and that the log is not rotating in the machine. Since the 

knife arm is still being pressed against the static log, it is important that the operator notices this 

quickly, so that the knife is not damaged. A log that has suffered spin-out is forfeit and must be 

discarded without yielding any veneer. From a data point of view, the problem with spin-out is that it 

is still recorded as produced veneer. The electrical motor is still running and produced distance is 

calculated from the rotation of the chucks and not the actual amount leaving the machine. When it 

comes to problems with the knife, this is primarily due to it hitting nails or rocks lodged in the log. 

These will chip the blade and the operator must notice this in the produced veneer that leaves the 

machine. For this purpose, there is an illuminated inspection point that is visible from the operator 

booth, seen in figure 3.2.4. From a data point of view, these events cannot be foreseen and they 

need to be discounted in the predictions concerning whether the knife is sharp or dull. 
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Figure 3.2.3: Inspection point for newly produced veneer. 

The maintenance of the knife is done by set intervals of produced veneer length. When the lathe has 

produced 10’000 meters of veneer, it is sharpened manually by the operator. It is up to the individual 

operator to decide whether it has been sufficiently sharpened. After an additional 5000 meters, 

meaning a total produced length of 15’000 meters of veneer, the blades are exchanged for a new 

pair. The spent blades are sent off-site to be properly resharpened. 

All production stops are logged in an application connected to the lathe. Times for starts and stops 

are logged automatically, as well as the duration of the stop. The operator enters the reason for the 

stop from several options and also enters the produced veneer length manually, in the cases where 

the knife has been sharpened or exchanged. 

 

3.3 Sensors 
 

 

Figure 3.3.1: Schematic showing the lathe from the side where the logs enter the machine. Measuring points and sensor 
numbers are indicated in the boxes with the signal processing method stated for each measuring point. 
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The lathe is equipped with six vibration velocity sensors, seen on the lathe schematic in figure 3.3.1, 

and one inductive sensor that measures rotations per minute (RPM) of the electric motor. There are 

also several vibration velocity sensors on the hydraulic pumps for the lathe, but data from these will 

not be utilized for predictions concerning knife sharpness. The sensors are developed by Vikon, 

which is also the company who has implemented the measurement solution. There are two forms of 

vibration sensors, one for horizontal vibration and one for vertical vibration. The sensors need to be 

mounted with these directions in mind. Some specifications for them can be seen in table 3.3.1. 

These apply to both horizontal and vertical vibration velocity sensors. 

 

 

 

 

Table 3.3.1: Specifications for the vibration velocity sensors. 

 

The sensor measuring RPM was originally designated as sensor 3, hence the gap in sensor 

numbering. This gap is eliminated in the data files so, for example, measuring point 3 refers to sensor 

4. This can be seen in figure 3.3.1. Sensors 1 and 2 are located on the electric motor, as seen in figure 

3.3.2. Sensor 4 is located behind the housing for the bearing of the left chuck, seen in figure 3.3.3. 

Sensor 5 is at the left side bottom of the frame, near the main axle and on the back side, where the 

veneer leaves the machine. It can be viewed in figure 3.3.5. Sensors 6 and 7 are on the opposite, 

right side of the lathe with sensor 6 placed on the right bearing housing, corresponding to where 

sensor 4 is placed, and sensor 7 is placed on the back side of the frame, similarly to where sensor 5 is 

placed. These are seen in figure 3.3.5. The sensors’ positions are primarily chosen to monitor the 

bearings of the machine and detect early signs of wear and damage. 

 

3.3.1 Sensor measurements 
The measurements are gathered by going through all the sensors, one by one, at set time intervals. 

This is done at frequency ranges 1000 Hz and 2000 Hz for the lathe sensors when processed with Fast 

Fourier Transform (FFT) and at 2000 Hz when handled with envelope techniques. Measuring point 

index 1 to 6 is for FFT and 7-12 is for data using envelope technique. FFT is an algorithm commonly 

used for signal processing (NTI Audio 2018). Envelope techniques are used for vibration monitoring 

to detect damages in bearings (Howieson 2003). Initially, both the 1000 Hz and 2000 Hz data were 

used. Later in the project, Vikon stopped recording data at 1000 Hz range and therefore only the 

2000 Hz range is used in the data analysis. Every measurement operation results in a collection of 

parameter values for that sensor with a timestamp, a batch. This batch is part of a larger batch, 

which contains all of the measurement operations. For example, the measurements done on sensor 

2 is not taken simultaneously as sensor 4. This means they will have different timestamps even if 

they are part of the same main batch (measurement cycle through all the sensors). 

The data from the sensors is written to an xml file, a platform independent data format (W3Schools 

2018a), on site. For each sensor measurement the program logs a timestamp (date and time of the 

measurement), the motor RPM, the bandwidth and the frequency range. The data recorded in the 

Sensitivity 29 mV/mm/s 

Frequency Range 4.5 - 2000 Hz 

Accuracy ±5% 

Temperature Range -40 to +100 °C 
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xml file are the 50 frequencies with the highest amplitudes in the vibration spectrum for that sample, 

with amplitude given in velocity (mm/s), and 13 so called Q-parameters. The Q-parameters are 

divided into three categories: (1) rotational parameters, which are a type of aggregate vibrational 

measurements, (2) shock and impact parameters and (3) friction parameters. The rotational 

parameters measure total acceleration and velocity, calculated as the root mean square (rms-value). 

Acceleration is sensitive to high frequency vibration and velocity to lower frequencies. They are also 

divided between acceleration and velocity that has a regular pattern, periodic or stationary, and 

stochastic vibrations with no discernable pattern. The shock and impact parameters measure peak 

amplitude in relation to rms of the velocity, as well as some other probability distribution measures 

in the form of kurtosis (how probable extreme outcomes are) and skewness (the asymmetry of the 

probability distribution of a random variable) of the signal. The friction parameters measure vibration 

energy noise intensity in the spectra, divided into four parts; low frequency noise, medium low 

frequency noise, medium high frequency noise and high frequency noise.  

A sample of a complete round of measurements is sent at even intervals for use in the monitoring of 

the machine parts, but the data is also stored locally at the site, reaching back 3 months, and can be 

accessed remotely. Initially the logging interval was 10 minutes. This was later changed to 3 minutes 

in order to generate more usable data. 

 

Figure 3.3.2: View of the motor sensors and indication where the left chunk and left main shaft sensors are located. 
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Figure 3.3.3: Detail of the left chunk sensor. 

 

Figure 3.3.4: Detail of left main shaft sensor. 
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Figure 3.3.5: View indicating where the right chunk and right main shaft sensors are located. 

 

3.4 Hypothesis on how to detect dullness of veneer knife 
As can easily be seen, the sensors are not placed particularly close to the knife. Therefore, it becomes 

quite a challenge to predict any changes in the state of the knife. The working hypothesis is that a 

knife that is duller will produce more vibrations, not just in the knife but throughout the entire lathe. 

While there are no sensors mounted on the knife or the knife carrier, there are sensors measuring 

vibration velocity on parts related to the cutting. The pair of sensors on the outside of the frames on 

the housing for the chucks, sensors 4 and 6 (measuring points 3 and 5), might possibly detect 

vibrations due to dullness. Similarly, the pair of sensors on the main shaft, sensors 5 and 7 

(measuring points 4 and 6), might also be affected by vibrations due to dullness. If it is possible to 

detect vibration patterns giving frequency or Q-parameter shifts in some of these sensors when the 

knife is dull, then it will be possible to create an alert system for when the knife needs sharpening. 
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4 IIoT and ThingWorx 
 

4.1 Industrial Internet of Things 
The Internet of Things (IoT) refers to the connection of objects, physical and virtual, to the internet. 

This goes beyond more conventional connected devices, such as desktop computers and 

smartphones, and includes almost any data generating and connectable device, referred to as a 

Thing. Industrial Internet of Things (IIoT) is the application on industry. IIoT uses this connectivity on 

sensor data, machine-to-machine communication and automation technology, to optimize industrial 

processes. The rationale being that smart machines are better than humans at evaluating and 

communicating their situation and status (TechTarget 2018).  

Another justification for the IoT approach is to better enable responses to incoming information in 

real time. Traditionally, data is often first collected, then stored in a data base and then queried and 

analyzed with some business logic. This obviously creates a delay in the information. An IoT-platform 

therefore takes an event-based approach to both architecture and business logic (PTC 2018a). 

There are two main parts of the IoT, the “Edge” and the “Cloud” (Biron & Follett 2016 p 3-4). The 

Edge is where the real Things are, the entities creating and sending the data (Biron & Follett 2016 p 

21). The Cloud is where the IoT solutions application is located. The IoT does not look at things locally 

and globally, from the local perspective. Instead it places its perspective in the Cloud and from there 

reaches out towards the Edge to gather information and return suggestions and commands. 

However, the model for the application is usually constructed from the Edge and up to the Cloud, 

since the Edge is where the need for the solution arises (Biron & Follett 2016 p 39). 

 

4.2 The ThingWorx Platform and the ThingWorx Model 
ThingWorx is an industrial platform adapted for the IIoT and designed for managing and organizing 

industry and business over all scales. The software is developed and supported by the company PTC 

(PTC 2017a). It builds on the Apache Tomcat Web server, which is an open-source implementation of 

the Java Servlet and other Java web server communication functionality (Apache Software 

Foundation 2018). 

ThingWorx uses what PTC calls model-based application development. The purpose of this is to 

create reusable building blocks and avoid time consuming debugging and updating of code. The 

ThingWorx Model provides a semantic layer for the Things and data inside an application. This is 

done by creating your solution with a Thing-centric mind frame, making all parts of the industrial 

process into entities that are connected to a varying degree. The structure inside ThingWorx is similar 

to object-oriented programming and it has equivalents to programming concepts like inheritance 

(PTC 2018a). 

Instead of writing data base queries, an end user should be able to ask questions of specific Things, 

pertaining to properties and location of a said Thing at a certain time or time period. ThingWorx uses 

RESTful web service calls to communicate this between the Thing-representations in the platform 

and the actual Things (PTC 2018a). 
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Figure 4.2.1: The ThingWorx platform and its components.  

The ThingWorx platform is divided into several components, seen in figure 4.2.1 (PTC 2017a), with 

different applications in mind. They are all tied together with ThingWorx Foundation, which also 

contains the core functionality. ThingWorx Analytics is the extension which focuses on analyzing data 

(PTC 2018b). There are also extensions for various other ends including, ThingWorx Studio for 

Augmented Reality functionality, ThingWorx Utilities which provides extended device management 

and monitoring of connected products and ThingWorx Industrial Connectivity which provides 

interoperability for automation devices and software applications and is powered by the Kepware 

OPC-platform, another PTC product (PTC 2017a). In this project the use of the ThingWorx platform 

will be limited to Foundation, Analytics and some of the extensions described below. 

 

4.3 ThingWorx Foundation 
To create and modify applications, ThingWorx uses a graphical interface, called the Composer, which 

is accessed through a web browser, see figure 4.3.1. This composer acts as an interface to the server 

instance of ThingWorx Foundation (PTC 2018a). 



14 (53) 
 

 

Figure 4.3.1: The ThingWorx Composer in Mozilla Firefox 

Inside the composer it is possible to create and connect Things, which of course is the basic purpose 

of any IIoT-platform. Things can be basically anything, but in the case of production industry and IIoT, 

it is commonly production machines and sensors monitoring production. To exemplify with the 

veneer lathe that is being monitored in this project, it is possible to represent parts of the machine 

and its sensors as individual Things, or you could consider all of it as one Thing with the parts as 

properties of the machine. Alternatively, both is possible, with the parts tied to the main machine 

through services.  

Properties are simply variables tied to the Thing and services are operations or functions relating to 

the Thing. Some services are supplied as default for different types of Things while others can be 

written by the user. To write services, ThingWorx makes use of a simplified version of JavaScript to 

create programming scripts. This means that it is not entirely code-free and some programming 

background is helpful when using the Composer. Furthermore, there are System Development Kits 

for several mainstream languages (PTC 2018a). These will be discussed later on. In many ways the 

Composer can be viewed as an Integrated Development Environment similar to what is used with 

other programming languages. 

Part of what makes it easier to use for those who do not have a software developing background are 

the categorizations. There are built-in categories and by adding tags and creating Thing templates 

and shapes it is easy to group entities. Templates represent a Thing type, so that the developer easily 

can create several identical Things, while shapes contain abstract definitions. All Things have a 

template and templates can implement many different shapes. They also provide an easy way to 

change a property or a service for all Things of the same type (PTC 2018a). 

Another essential category is Data Storage. Just as Things represent the parts of your process the 

Data Storage types contain historical and current data for the Things and the process. These can be 

independent or tied to a specific Thing and there are types adapted for both time series and non-

time series data. The data in these containers is what is usually exported for use with ThingWorx 

Analytics (PTC 2018a). 
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To facilitate interaction with the application by the user, ThingWorx allows the developer to create 

so-called Mashups. These are graphical user interfaces tied to entities and their functions. Mashups 

can be used to create Human-Machine-Interfaces (HMIs) for the application, with buttons, displays, 

diagrams and similar objects being tied to different entities (PTC 2018a). Certain functions actually 

work better when done with the Mashup’s widgets, as the Mashup objects are called, than with 

functions used in service scripts. An example would be when exporting data from a data storage 

container to a Comma Separated Value-file (csv file), where the Data Export widget preserves the 

order of the fields (i.e. matrix columns) but the extension for exporting csv files in a script service 

does not. 

The ThingWorx platform can be used for a wide variety of implementations, but that is beyond the 

scope of this report. For this project the platform was used to receive data through a Remote Thing, 

a template for Things meant to connect to applications outside ThingWorx, and then store this data 

in appropriate containers and data shapes. The data was then filtered and combined before being 

exported to a format acceptable to ThingWorx Analytics. 

 

4.4 ThingWorx Edge System Development Kits 
Apart from the main platform, ThingWorx also has system development kits (SDKs) for connecting 

external implementations, via PTCs own ‘AlwaysOn’ protocol (PTC 2018a). There are supported SDKs 

for C, Java, .NET, iOS and Android. The main SDK is the one for C, which is understandable 

considering that a lot of Things are running embedded systems. The main reason for the SDKs is to 

easily facilitate communication between existing programs and ThingWorx applications, or for 

functions not supported in ThingWorx. Of course, they can also be used if the developer prefers to 

implement some functionality using any of the supported SDKs (PTC 2018c).  

There is also the possibility of using analytics at the Edge, so called Edge Analytics. This is 

implemented with the ThingWatcher, which is a Java API that can be implemented with the Java SDK 

or in a standalone Java program. The ThingWatcher contains reduced analytics that can be used for 

detecting signal deviation (PTC 2018b). 

 For the purpose of this project, the Java SDK was used to convert data from the format of xml files to 

json objects, another platform independent data format (W3Schools 2018b), and then send it to 

ThingWorx. The Java application was primarily used to transfer large amounts of historical data to be 

used for modeling purposes, but it can also be used to pass live data or simulate the passing of live 

data. The ThingWatcher will not be utilized. 
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5 Machine Learning and ThingWorx Analytics 
 

5.1 ThingWorx Analytics 
 

ThingWorx Analytics is one of the modules of the ThingWorx platform. Its purpose is to discern 

information out of data in the ThingWorx applications. The idea is to make available tools used for 

machine learning and statistical analysis available through a simple user interface. This in turn allows 

users and developers that do not have an in-depth knowledge of data science to analyze data they 

store in their applications (PTC 2017a). 

 

5.1.1 ThingWorx Analytics Server and Extension 
ThingWorx Analytics requires quite a bit of setting up before it can be connected and used with the 

ThingWorx platform. Apart from needing a working installation of ThingWorx Foundation and access 

to the Composer, it also needs a running instance of ThingWorx Analytics Server. Furthermore, the 

ThingWorx Analytics Extension needs to be applied to Foundation. Optimally, ThingWorx Foundation 

and Analytics Server will run on different server machines. The Analytics Extensions has two 

purposes. One is supplying a means to connect Foundation to Analytics Server. This creates 

appropriate Things representing the Analytics Server instance and makes the Analytics functionality 

accessible through Mashups. The second part is supplying functionality that allows the use of models 

for real time predictions. This function only requires the Extension (PTC 2018 b). 

 

5.1.2 Analytics Builder 
The first major part of ThingWorx Analytics is the Analytics Builder. This is where data sets are 

uploaded for modelling and analysis purposes. The Analytics Builder connects to the Analytics Server 

via an Analytics Server Thing that contains all the needed information. This Thing is auto-generated 

with Analytics Extension by entering certain parameters for the Analytics Server. Figure 5.1.1 gives an 

overview of the connection.  

 

Figure 5.1.1: The settings window of the Analytics Builder. It shows the connection information and also a list of datasets. 
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On the left-hand side all the functions of the Analytics Builder can be seen. Data is where data sets 

can be uploaded and viewed. This is also where filters are most easily viewed and created. Signals is 

used to determine significant machine learning features affecting a chosen goal for analysis. Profiles 

investigates combinations of features in relation to a chosen goal. Lastly, Models is where modelling 

is done using statistical and machine learning algorithms (PTC 2018 b). 

 

5.1.3 Datasets and Filters for Analytics Builder 
The Analytics Builder takes datasets in two files. A Dataset Field Configuration file, in the form of a 

json file, is needed to define the Dataset properties. For the configuration there are seven properties 

available for each feature, also referred to as fields in ThingWorx Analytics. The mandatory 

properties are Field Name, Data Type and Op Type. The first two are just the basic information: 

naming and type declaring the feature. Op Type states how the variable can be used, meaning for 

example if it is numerical, informational or temporal. For appropriate types it is also possible to state 

minimum and maximum values, time sampling interval for time-series data, if the field is constant for 

all samples as well as acceptable values for strings (PTC 2018 b). 

 

 

Figure 5.1.2: Data tab. Showing all datasets and some of their basic information 

 

The dataset itself is defined in a csv file, with columns for machine learning goals and features. If the 

csv file has a header for each column, this needs to be noted when uploading the dataset or the 

Builder will give an exception. The idea is to feed information from connected Things, but any data 

that is in the right format can be used to generate models (PTC 2018 b). 

To perform the analysis, appropriate goal fields must be included in the data set. Several goals can be 

defined but these will have to be used separately from each other and will be handled like any other 

feature if not stated as the goal. Which features are to be used as goals is not set in the data but 

defined for each operation performed on the data set inside Analytics Builder. Goals can be of 

Boolean type, continuous numerical values or groupable information. The last type can be either 

categorical, like hair color, or ordinal, such as economic status (high, medium, low) (PTC 2018 b). 

Once uploaded successfully, the dataset will appear in the tab shown in figure 5.1.2. Further 

information can be accessed by viewing individual jobs, as seen in figure 5.1.3. If certain properties 
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are not defined, they are ascribed a default value. Minimum and maximum are recorded for 

continuous features (PTC 2018 b). 

 

 

Figure 5.1.3: Overview of a specific dataset. It shows size of the dataset and information for individual features. 

 

To facilitate different analyses, Analytics Builder also allows for filtering the data. Figure 5.1.4 shows 

an overview of the filter tab. By default, there is a filter called “all_data” which represents the entire 

dataset. This is because a filter must always be chosen. When new filters are created, these indicate 

how much of the whole dataset the filtered data contains. If selected, it also shows which 

parameters have been filtered and for which values (PTC 2018 b). 

 

 

Figure 5.1.4: Filter tab of a dataset. It shows an overview of the filters and how of much data they contain. 
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The filtering is not entirely up to the user. Analytics Builder suggests certain intervals for each field 

and these cannot be altered. Filters can be used on data for all the different operations in Analytics 

Builder. It is also possible to exclude features when executing the different analysis jobs. 

 

5.1.4 ThingWorx Analytics Builder Signals 
ThingWorx Analytics Builder Signals is the most fundamental analysis in Analytics Builder. It checks 

which of the data features that are most statistically significant towards the defined goal. For 

example, if the features are sensors with several frequency bands and our goal is to detect when an 

alarm is triggered, Signals will rank the features (sensors bands) according to which one is most 

significant for the alarm occurring (PTC 2018b). 

Signals are calculated using the concept of mutual information. This is done by computing 

Information Entropy for the feature and the goal. If there are large numbers of correlated features 

these may crowd other features that are perhaps less individually significant but still provide new 

information. Analytics Signals handles this by weighing features with their correlation to features 

that are already selected (Peysakhov 2017 15:25 min). This means that if modelling is done using only 

the more significant features, information loss is low. 

Looking at figure 5.1.5, the predictive strength is indicated by the green bars and numbers next to 

the feature names in the lower left frame. Predictive strength is a normalized measure for the 

variable’s ability to predict the goal, given between 0 (bad) and 1 (perfect). On the right, individual 

features can be looked at to show which values of the feature are most significant in relation to the 

goal. For each of those feature values the average value of the goal is shown along with how that 

average compares to the average for the entire data set (PTC 2018b). This information will be more 

relevant for a numeric goal than for a Boolean goal. 

 

 

Figure 5.1.5: Signals tab. Predictive strength of individual features is displayed on lower left. Each feature can be selected for 
further information based on its strength in relation to the stated goal. 
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5.1.5 ThingWorx Analytics Builder Profiles 
Another Analytics Builder function is Profiles. Profiles investigates if there are any groups of features 

that are significant for the stated goal. This may be any combination of features, but it may only 

appear once, meaning that feature 1 together with feature 2 excludes feature 2 together with 

feature 1. Using Profiles, we can see if the goal correlates with a set of features (PTC 2018b). An 

example would be monitoring the heat inside a wall, where temperature on both sides may affect it 

in combination. Profiles shows combinations, but it is still possible that the individual features, 

shown in Signals, are more important.  

 

5.1.6 ThingWorx Analytics Builder Modeling 
Modeling is the main functionality of the Analytics Builder and it allows the user to create predictive 

models that can be deployed in the main ThingWorx platform. An overview of the Models tab can be 

seen in figure 5.1.6. After finding patterns in the data ThingWorx can make predictions about where 

the process is heading and make suggestions. In most cases modeling is a two-part process. First a 

model is trained using machine learning and statistical algorithms. Then the model is validated using 

part of the data excluded in the training. Model validation is included by default, with a validation 

hold out of 20%, but it is not mandatory (PTC 2018b). 

 

 

 

Figure 5.1.6: Models tab. Here it is possible to train new models and access all the predictive models that have been trained. 
Depending on the chosen goal for the model training, different statistical and machine learning measures are shown. 

 

A relatively large variety of techniques, called learners, are available for model training. These will be 

discussed in section 5.2, along with the different comparison metrics used by Analytics Builder. The 

different learners are combined using ensembles. The ensemble technique is the chosen strategy for 

combining and evaluating learners. Average ensemble technique is when each learner scores 

predictions separately and then the scores are averaged. When Best is selected, only the best 

performing learner is used for scoring (PTC 2018b). 

After the model has been trained and validated, several comparison metrics are displayed. The 

results can be viewed in a separate tab and what appears is also dependent on the type of goal 

chosen. After the model is trained it can be used for Predictive Scoring. Predictive scoring means 

examining a data set and making predictions based on similarities to records used in model training. 
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Each record is assigned a predictive score reflecting how good the prediction is. Scoring can be done 

on the exact same data that was used for training but ideally the user will upload additional data. 

Even if no additional data is used the scoring will not be perfect and the model will make a guess 

based on the sample. Another possible analysis done by Predictive Scoring is Important Fields. Here 

the user can specify a desired number of fields that will be displayed together with a weight. The 

weight indicates how influential the feature is on the goal (PTC 2018b). 

 

5.1.7 ThingWorx Analytics Manager 
Analytics Manager is where models can be used once they have been trained and published in 

Analytics Builder. It also allows use of computational models from external applications, such as 

Microsoft Excel or PTC’s Mathcad. As previously mentioned, Analytics Manager does not require 

Analytics Server but does require that the Analytics Extension has been installed with ThingWorx 

Foundation. This means that if the developer or user has some other computational tool that they 

prefer they can still use this with ThingWorx. For every type of analysis tool an Analysis Provider is 

needed. This handles communication between the Analytics Manager and the analysis tool. Even 

models created with Analytics Builder require this, despite being part of the ThingWorx framework. 

For this purpose, PTC has developed ThingPredictor, which is run similar to a separate server 

program. The ThingPredictor handles predictive scoring, mentioned in section 5.1.6, for real-time use 

with the published model. While this might seem tedious it can allow the use of Analytics Builder 

models without having an Analytics Server connection, if an exported model is uploaded. If a model 

has been published it is available via an URL link when viewing the model. This will download an xml 

file containing the model in Predictive Model Markup Language (PMML) (PTC 2018b).   

Once an Analysis Provider is working, Analysis Models can be imported. For models developed in 

Analytics Builder this is simply done by pressing the publish button once the model training is 

complete, see figure 5.1.6. After this it is possible to connect to a Thing in the main platform 

representing the predictive model. This is done partially in Analytics Manager and partially in the 

ThingWorx Composer. The Analytics Extension provides services that can be used to create Thing 

Templates and Things for this purpose. The Thing’s properties are then mapped to the Analysis 

Models inputs and results. This allows for Analysis Jobs to be automatically generated for the most 

recent data (PTC 2018b).   

 

5.1.8 Monitoring in ThingWorx 
When the previous steps are finished, data can be visualized by creating applications with mashups, 

as discussed in chapter 4. This ties together the whole process. Data is received by the main platform 

and sent on to the analysis tool via the Analysis Provider. Once it has scored the data, the results can 

be displayed, and actions can be taken if needed. It is also possible to feed simulated data to the 

model to determine what would happen in different scenarios. This last part is what truly makes the 

model predictive (PTC 2018b).   

 

5.2 Machine learning and statistical algorithms and measures 
 

Analytics Builder uses a relatively large variety of learner techniques for model training. These are 

(PTC 2018b): 
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• Linear Regression 

• Logistic Regression 

• Neural Networks 

• Decision Trees 

• Gradient Boosting 

• Random Forests 

Furthermore, various measures are used to evaluate and compare the results of the modelling. A 

short description of these algorithms and measures will follow. For a more in-depth discussion the 

reader is encouraged to seek out works on machine learning and mathematical statistics. 

 

5.2.1 Linear Regression 
Linear Regression means trying to fit a linear equation to observed data points (Lacey 1998). In the 

simple case of one independent and one dependent variable this means the equation is a line, as 

seen in equation (1) and figure 5.2.1 (Sewaqu 2010). 

 

𝑌 = 𝑘𝑋 + 𝑚   (5.2.1) 

Here X is the dependent variable and Y is the independent variable. k denotes the relationship 

between these two variables, in this case the inclination of the line. m is the value of Y when X is 0. 

 

 

Figure 5.2.1: Linear Regression. Blue dots represent measured values and the red line is the obtained pattern. 

 

The most common method for doing this is using the least squares method, which means minimizing 

squares with opposite corners on the observed data point and the line (Lacey 1998). For data with 

more independent variables the geometric comparison is not valid, but the principle for computation 

is still the same.  
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5.2.2. Logistic Regression 
Logistic Regression is very similar to Linear Regression. The main difference lies in that the 

dependent variable is categorical, for example a Boolean of true or false value.  This can be seen as a 

categorization of samples. Given a certain combination of observed values for features the method 

tries to ascertain the status of the dependent variable (Pennsylvania State University 2018). 

 

5.2.3 Neural Networks 
Neural Networks, or more precisely Artificial Neural Networks, are learning algorithms inspired by 

biological neural networks. Idealized neurons are studied to create machines that can learn and 

recognize patterns. These neurons are modelled as multiple input single output (MISO) units. Each 

input has a weight attributed to it to rate the ingoing information. This is modelled in two parts. First, 

we have equation (5.2.2) (MacKay 2003 p471) 

 

𝑎 =  ∑ 𝑤𝑖𝑥𝑖𝑖    (5.2.2) 

 

where 𝑖 is the number of inputs, 𝑤𝑖 are the weights, 𝑥𝑖 are the inputs and 𝑎 is called activation and is 

the weighted input signal. Secondly, we have the output 𝑦, also called activity, which is a function of 

the activation. A common choice is the linear logistic function, which together with (5.2.2) gives 

equation (5.2.3) (MacKay 2003 p471-472). 

 

𝑦 =
1 

1+ 𝑒−𝑎  𝑦 ∈ (0,1)  (5.2.3) 

 

This single neuron can be seen as a neural network on its own. If we also have a target value, 𝑡, for 

our output the idea is to train the network so that it learns a model of the relationship between 

input, 𝒙, and target, 𝑡. This is a matter of calibrating the weights, 𝒘, by minimizing an error based on 

the difference between the target and the output. For predictive purposes this means that once the 

neural net has been trained so that its output matches the target as accurately as possible, it can 

then state what will happen for a given set of feature inputs (MacKay 2003 p473-476). To be useful, 

the artificial neurons are connected into networks of several neurons. This allows them to become 

more than singular amplifiers and have a memory function (MacKay 2003 p505-507).  

Hidden Neurons can be introduced between the input and output layer. These do not correspond to 

observed variables and can play other roles in the probabilistic model. Often, they function as 

feature detectors used to spot patterns in variable shifts and high-order correlations (MacKay 2003 

p525-526). 

Neurons can be combined into multilayer perceptrons, which contain several levels of rows of 

feedforward neutrons. These are given by one input layer, one output layer and one or several 

hidden layers. A neuron in a layer sends its output forward to every neuron in the next layer, but not 

to its neighbors in the same layer. This type of feedforward network can be seen in figure 5.2.2 

(Glosser 2013) (MacKay 2003 p527). 
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Figure 5.2.2: A Multilayer Neural Network with one hidden layer. 

 

While Linear Regression produces a flat plane for three-dimensional space, a Neural Network of the 

type mentioned above will give a membrane-like surface. This means that a Neural Networks can fit 

more complex functions to the data, which is useful when looking at more complex input-output 

relations (MacKay 2003 p528). 

 

5.2.4 Decision Trees 
Decision Trees tries to determine different scenarios depending on the possible values of the feature 

variables, as seen in figure 5.2.3 (Manske 2005). Each level contains all possible values of the current 

variable and it splits into new branches for each of those. The boxes are called leaves and show the 

current value of the dependent variable, the goal. When branched out this gives a blue print which 

allows the model to state the value of the goal depending on which leaf the feature values lead to 

(PTC 2017b 5:55 min). 
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Figure 5.2.3: Decision Tree. Each level represents possible values for a given variable. For every value the tree splits into new 
branches. 

 

5.2.5 Gradient Boosting Machine 
Gradient Boosting Machines are a type of ensemble technique that uses several weak learners to 

boost predictions. That a learner is weak means that it gives only a rudimentary classification. The 

rationale behind this is that it is often easier the find several rough rules of thumb, than finding one 

single accurate rule for prediction (Schapire 2003). Often weak Decision Trees are used, meaning 

trees that are not fully grown in order to improve computation time. The Gradient Boosting is done 

by adding a new learner for each iteration and then training it based on the error for the whole 

ensemble so far. There is a risk of overfitting the model to the training data, but Gradient Boosting 

Machines make up for it with high flexibility and easy implementation (Natekin & Knoll 2013).  

 

5.2.6 Random Forests 
Random forests are another ensemble technique that is specific for Decision Trees. A Random Forest 

uses several deep or fully grown trees to make predictions. Another difference from a Gradient 

Boosting Machines, which uses Decision Trees, is the use of random stochastic samples of data. The 

randomness is used with the aim of getting better generalization and less overfitting to the training 

data (Ho 1995). 

 

5.2.7 Comparison Metrics 
Analytics Builder uses several comparison metrics, differing depending on the type of goal used. For a 

continuous numerical goal, Root Mean Square Error (RMSE) and Pearson Correlation is shown. RMSE 

is a common statistic measure and is computed with the difference between the observed and 

predicted values of the goal. RMSE is also displayed normalized between 0 and 1, referred to as 

RMSE Normalized. The Pearson Correlation, or just Correlation, looks at how much the predicted and 

observed value of the goal vary in unison. Furthermore, a scatter plot is displayed, figure 5.2.4 (PTC 

2018b), with predicted results plotted as a function of actual values. Color denotes if the results 

where over-predicted, accurately-predicted or under-predicted (PTC 2018b). 
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Figure 5.2.4: Scatter plot for continuous goal variable. Color denotes accuracy of prediction and size denotes number of 
predictions. 

 

For binary goals a confusion matrix, figure 5.2.6 (PTC 2018b), and a Receiver Operating 

Characteristics (ROC) curve, figure 5.2.5 (PTC 2018b), are displayed along with a numerical ROC value 

and the Matthews correlation coefficient (MCC) (PTC 2018b). 

 

 

Figure 5.2.5: Confusion Matrix. Showing numbers of and rates of true and false positives and negatives. 
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The confusion matrix shows the outcomes of the predictions in relation to the actual results. Number 

of records and percentage of the validation set are shown for true positive (prediction and actual 

result true), false positive (prediction true and actual result false), true negative (prediction and 

actual result false) and false negative (prediction false and actual result true) (Fawcett 2005). 

 

 

Figure 5.2.6: ROC curve. The curve has the desired appearance, by going up quickly, showing that true positives significantly 
outnumber false positives. 

 

The ROC curve plots true positives as a function of false positives for various thresholds. The 

threshold is mostly significant when values between false (0) and true (1) are meaningful. It is 

desirable that the curve follows the left (west) and top (north) of the plot as much as possible for a 

high true positive ratio. Visualizing the ROC can give a more intuitive feeling for the prediction 

performance than simply calculating the true false positive rate (Fawcett 2005). 

MCC is a measure of the correlation between true and false positives and negatives. It can be 

calculated from the confusion matrix according to equation 5.2.4: 

 

𝑀𝐶𝐶 =
𝑡𝑝×𝑡𝑛−𝑓𝑝×𝑓𝑛

√(𝑡𝑝+𝑓𝑝)(𝑡𝑝+𝑓𝑛)(𝑡𝑛+𝑓𝑝)(𝑡𝑛+𝑓𝑛)
   (5.2.4) 

 

with tp being true positive, tn being true negative, fp being false positive and fn being false negative. 

An advantage of the MCC is that it takes into account the entire result population and only scores 

high if the model predicts well on both outcomes. It will also signify if there are no classifiers on one 

side, for example 𝑡𝑛 = 𝑓𝑛 = 0, by being undefined (Chicco 2017). 
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6 Comparing analytics tools and CSense 
 

To able to make some comparative evaluation of ThingWorx Analytics, another analytics program will 

also perform analysis on the data. This will establish a baseline. 

CSense is a product from General Electric (GE) that provides predictive analytics, with similar goals 

and uses as ThingWorx Analytics. It is closely tied to GE’s IIoT platform, Predix, and their HMI system, 

iFix (General Electric 2016). For the moment though, CSense is not sold commercially but GE has 

plans to include it in their cloud analytics. 

The main components for analytics and monitoring in CSense are Proficy Troubleshooter and Proficy 

Cause+. The Troubleshooter has separate versions for continuous process data and for discrete and 

batch process data. These take data in csv format, just like ThingWorx Analytics, but they do not 

need a data configuration file that states data shape and use. This is due to the Troubleshooter 

having data preparation as a built-in function, with more options than Analytics Builder’s filter 

function (GE Digital 2010). It does, however, not take data in Boolean values. For this it is needed to 

configure the Booleans as binary variables, 0 and 1.  

There are several tools for visualizing and inspecting the data once it has been uploaded and 

prepared. One useful feature is the possibility to compute a correlation matrix for all or some of the 

features. Another is viewing trends and histograms of individual fields. It can also build decision trees 

that allows the user to investigate how the process ends up in different states (GE Digital 2010). 

Troubleshooter uses statistical methods and decision trees, just like ThingWorx Analytics. There is, 

however, no mention of using decision tree ensembles like random forest or gradient boosting 

machines. For the Continuous Troubleshooter, the statistical methods used are not described in 

detail and it is not possible to adjust parameters for these. It tries to accomplish two things when 

doing Continuous modeling. One is to create a non-linear model following the target. The other is to 

create rules for the parameters relating to the target. When using CSense for process control, this 

can be very useful (GE Digital 2010). 

When it comes to the Discrete and Batch Troubleshooter, there is the possibility for creating models 

using Principal Component Analysis, Partial Least Squares and Decision Trees. For batch processes it 

recommends using Principal Component Analysis and for discrete processes it recommends a 

Decision Tree (GE Digital 2010). 

Principal Component Analysis (PCA) is a method to handle processes with a large number of variables 

that are correlated to a varying degree. By performing linear algebra calculations on the covariance 

matrix (how the variables vary together) PCA reduces several variables down to a few that still 

capture the majority of the system characteristics (Wise & Gallagher 1996). Part of this is showing 

how much of the variability that is captured in each of the calculated principal components. A limit 

on how much of the system needs to be captured can be decided by the monitoring strategy. It is 

also possible to see which of the original variables make up the principal components and track any 

deviations back to the original parameters. This means that an operator can observe the reduced 

system and only look at the original larger number of parameters when there is a problem (Wise & 

Gallagher 1996). 

Partial Least Squares (PLS) combines PCA with linear regression. This means that it looks at both 

correlation and covariance of the variables. One of the main benefits of PLS is that it can handle 

several variables and several predicted variables (Wise & Gallagher 1996). 
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For real-time use, GE delivers Proficy Cause+. Cause+ focuses on process monitoring and control and 

makes use of the models developed with Proficy Troubleshooter. It allows you to receive and analyze 

real-time data against set alarm levels and can deliver messages and suggestions based on this. It can 

also log historical data that allows users and technicians to look at events from previous shifts (GE 

Digital 2011). In this way, it can perform similar functions to ThingWorx Foundation when dealing 

with process monitoring. For the use in this project, Proficy Continuous Troubleshooter will be the 

primary tool for comparison. This choice was made for easier comparison to ThingWorx Analytics and 

due to the process data. 
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7 The Veneer Lathe Modeling and Prediction Application Procedure 
 

Here the application used for processing and analyzing data is explained. It consists of several parts 

and a path of multiple steps is followed to go from the data onsite to predictive scoring results. This 

will result in some repetition from the previous chapters, but for sense of clarity all components will 

be covered. An overview of how the parts are connected can be seen in figure 7.1. 

 

 

Figure 7.1: A flow diagram of how the data is moved and processed. The upper part shows the steps from the production site 
up to the finished model. The lower section illustrates real-time flow when the model has been deployed. 

 

As explained in chapter 3, there is a computer on-site that gathers measurements from the mounted 

sensors. This is done at even intervals, going through each of the sensors on the lathe and on the 

pumps and gathering data with timestamps for each sensor. These gathered measurements are 

processed and recorded as Vikon’s Q-parameters and as the most significant frequencies inside xml 

files. This stored data is then transferred from the onsite computer to the computer running the 

application offsite. Once downloaded, the sensor data is transformed from xml format to json objects 

before being sent to a Remote Thing in the ThingWorx platform. The data format transformation and 

sending it to ThingWorx is done with a Java program that is written for this purpose, which utilizes 

ThingWorx’s Java SDK. ThingWorx Thing properties can be of xml type, but this project is a part of a 

larger project for predictive maintenance that receives data in json format. The choice to use json 

was made to make the application easier to integrate with the larger project.  

The main part of the ThingWorx platform, ThingWorx Foundation, is run on a Windows Server 2016 

machine. Here the sensor data is received by the Remote Thing with the json property. The data is 

then stored in Data Container Streams with Data Shapes appropriate for the stored data. For 

example, one Stream holds the frequency data and another one stores the Q-parameters. The other 

part of the data, which contains information on knife exchange and sharpening, is also read to the 

platform. The knife data is in csv format to begin with and can be read using a ThingWorx service 

extension called CSV Parser.  
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Figure 7.2: The basis for combining the knife data with the sensor data. E represents a planned exchange after producing 
15’000 meters of veneer. S stands for sharpened and denotes that the knife is sharpened at 10’000 produced meters. U E is 

for an unforeseen exchange relating to knife damage. The blue boxes are for sensor data samples included before the event. 
These are marked as dull. The purple boxes are for included samples after a knife event. These are marked as not dull, 

meaning the knife is sharp. 

 

Once both parts of the data, sensor and knife events, are inside the platform they are combined. This 

is done by taking an entry for a scheduled knife event and then combining it with the sensor data. 

The basis for the combination is taking a few entries before the production stop timestamp and 

marking them as dull and then taking an equivalent number of samples after the production start 

timestamp and labeling these as sharp. Here, scheduled events refer to not including instances 

where the knife was exchanged due to some type of damage. It only includes those events when it 

has produced the set veneer length for sharpening and exchange. An overview of this can be seen in 

figure 7.2. The sensor data entries queried in relation to a knife event are also checked to make sure 

that they do not coincide with another knife event. This might happen if an unforeseen event 

occurred in a short time span after another event. Once the data has been combined, it is exported 

to a new csv file via a Mashup using the Data Export Widget. This data file then undergoes some 

minor alterations with a data preparation program, named Talend as well as some editing in 

Notepad++. The final step before going to ThingWorx Analytics is configuring the Data Configuration 

json file, which specifies the type and use of the data. 

When all of the preparation of the data is done, it is uploaded as a Data Set in ThingWorx Analytics 

Builder. Here the data can be handled and analyzed according to the methods and functions 

explained in chapter 5. The analysis done in CSense uses the same csv files but with the differences 

noted in chapter 6. ThingWorx Analytics Server runs on a Linux Virtual Machine on the same server 

that runs ThingWorx Foundation. CSense is run on a separate Windows Server. 

Once the model is created and validated, it is published to Analytics Manger. Here ThingWorx can 

send data in real-time for predictive scoring. This is done by generating Things that represent the 

model and are connected via the ThingPredictor analysis provider. The result of the scoring job is 

then returned to the Thing in ThingWorx and it can be utilized for whatever is desired.  
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8 Results 
 

The results are divided between ThingWorx in section 8.1 and 8.2 and CSense in section 8.3. Please 

note again the previously mentioned discrepancy between sensor index and measuring point index. 

For example, that sensor 4 is measuring point 3. 

 

8.1 Knife Dullness Prediction with ThingWorx 
During the visit to the veneer production site it became clear that sharpening is done manually by 

the operator and that it is up to him or her to decide when the knife is sufficiently sharp. Therefore, it 

was assumed to be more appropriate to primarily look at entries close to the exchange of the knife 

since this might more uniformly represent dull and sharp states. 

The first analysis is seen in figure 8.1.1 where Analytics Builder Signals has been run on the Q-

parameter data. The results show that the sensor mounted on the left chuck housing is deemed most 

significant. Also, the opposite chuck sensor is listed. Two features from the left sensors on the motor, 

sensor 1, are listed. Sensor 1 is the farthest from the cutting process, so this is somewhat surprising. 

The most important features seem to be those dealing with vibration acceleration, parameters 

ending in G, and vibration in the low, SPI1, and high, SPI4, parts of the friction noise spectra. The 

predictive strength for the top features, 0.03, implicates that they have a low correlation with the 

goal. Analytics Builder Profiles did not yield any combinations containing more than one significant 

feature. 

 

 

Figure 8.1.1: Signals for the Q-parameters with the Boolean variable Dull as the goal. The most relevant part is the frame in 
the lower left showing important features and their predictive strength on the goal. 
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Figure 8.1.2: Signals for the frequency batch data with the Boolean variable Dull as the goal. The most significant part is the 

frame in the lower left showing important features and their predictive strength on the goal. 

 
In figure 8.1.2, Signals was calculated using frequencies. This shows less predictive strength than for 
the Q-parameters. In section 3.3.1 it is noted that the frequencies are recorded according to 
amplitude value. It is therefore interesting to note that the frequency position indicates that high 
amplitude is not what is most significant for the goal.  It does, however, show completely different 
sensors than the Q-parameter Signals. 
 

 

Figure 8.1.3: A comparison of using different learning algorithms for modeling. All of them where retrained two times to 
investigate consistency of results. NN stands for Neural Network, LogReg for Logistic Regression, DecTree for Decision Tree, 

RanFore for Random Forest and Grad Boost for Gradient Boosting Machines. The models use Q-parameters and all 
measuring points are included. Dataset with circa 1000 samples. 

Figure 8.1.3 looks at different learners being trained on data using only exchanges and Dull as the 

goal. All of them are retrained to investigate consistency in the accuracy. Linear Regression has been 

opted out in favor of Logistic Regression since the goal is a Boolean variable. 

 

 

Figure 8.1.4: Overview of results for Dull model training with Q-parameters for all sensors and measuring points. Learners 
used for training are Logistic Regression, Random Forest and Neural Net. They are also filtered for samples only relating to 

the exchange of the knife and not manual sharpening. 

 



34 (53) 
 

After looking at several learners some modeling was done using combinations of learners. These can 

be seen in figure 8.1.4 and detailed results for one model is displayed as an ROC curve in figure 8.1.5 

and confusion matrix in figure 8.1.6. The figures show that the model predicts correctly about two 

thirds of the time. 

 

Figure 8.1.5: ROC curve for model validation of a model using Logistic Regression, Random Forest and Neural Network as 
learners. 

 

 

Figure 8.1.6: Confusion Matrix for model validation of a model using Logistic Regression, Random Forest and Neural 
Network as learners. 
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Figure 8.1.7: Overview of results for Dull model training. The bottom four uses the frequency batch data and the top four are 
filtered for Q-parameters indicated in the result from Signals in figure 8.1.1. Both look at sensors 4 and 6, which are 
mounted on the outside of the chucks. 

Modeling was done using some of the parameters indicated by Signals, namely the G- and SPI-

parameters for the sensors mounted on the chucks. These yield marginally better results, seen in 

figure 8.1.7.  The bottom four modeling results in the same figure are for using frequency data, which 

yield results comparable to chance. 

 

 

Figure 8.1.8: Models trained with different amounts of data for the goal Dull. Models 05 through 08 have more data and 
more consistent accuracy. The models are trained using Q-parameters for the chucks (sensors 4 and 6) and are filtered to 
include entries when the motor is running, entries with only samples close to knife exchange and removing outliers in the 
parameters. 

 

In figure 8.1.8, modeling is done with the same configuration but the bottom four models are with 

less data. The modeling process uses one of each learner and then decides on which produces the 

best results. Figure 8.1.9 shows the ROC curve for one of the trainings done with the larger quantity 

of data and figure 8.1.10 shows the confusion matrix for the same case. 
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Figure 8.1.9: ROC curve for model 05 in figure 8.1.8. The model is trained using Q-parameters for the chucks, (sensors 4 and 
6) and is filtered to include entries when the motor is running, entries with only samples close to knife exchange and 
removing outliers in the parameters. 

 

 

Figure 8.1.10: Confusion Matrix for model 05 in figure 8.1.9. The model is trained using Q-parameters for the chucks (sensors 
4 and 6) and is filtered to include entries when the motor is running, entries with only samples close to knife exchange and 
removing outliers in the parameters. 

8.2 Q-parameter Prediction with ThingWorx 
Because predictions on knife dullness with high accuracy appears to not be possible with the current 
set up, some predictions were also done on Vikon’s Q-parameters in order to evaluate the statistical 
and machine learning applications more thoroughly. This changed the goal from Boolean to 
continuous, meaning that the comparison metrics and displayed results appear differently.  
 
Q-parameters ending in G are in the gravitational constant g. V-parameters and SPI-parameters are 
in speed mm/s. CREST, KURT and SKEW are dimensionless measures. 
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Figure 8.2.1: Model results for predictions using Q-parameters. From the bottom these are: Total Vibration Acceleration 

TOTG on sensor 1 using all other sensors and their Q-parameters. Total Vibration Acceleration TOTG on sensor 4 (measuring 
point 3) using only Q-parameters from the same sensor and no other G-parameters. Total Vibration Velocity TOTV on sensor 

4 (measuring point 3) using only Q-parameters from the same sensor and no other V-parameters. SPI1 on sensor 4 
(measuring point 3) using only Q-parameters from the same sensor and no other SPI-parameters. And at the top, Total 

Vibration Velocity TOTV on sensor 4 (measuring point 3) using only Q-parameters from sensors 4 and 5 (measuring point 3 
and 4) and no other V-parameters. 

 

8.2.1 Total Acceleration Prediction 
Predictions where done using total vibration acceleration, TOTG, as the goal. Signals showing 

important features is displayed in figure 8.2.2. Note the high predictive strength and the important 

features of listed parameters 3 through 5. Important features 1 and 2 are components of TOTG and 

therefore not very useful for testing predictive modeling. Figure 8.2.3 shows model results for TOTG 

for the same sensor but using only features from this measuring point and excluding G-parameters. 

Note the accuracy in the blue rectangle at the bottom of the figure. 

 

 

Figure 8.2.2: Signals for TOTG of sensor 4 (measuring point 3). The most important features for the goal are listed in the 
lower left frame. Note that the top two fields are components of the total acceleration.  
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Figure 8.2.3: Scatter plot for model results of model using Total Vibration Acceleration TOTG on sensor 4 (measuring point 3) 
as goal. Model training is done using only Q-parameters from the same sensor and no other G-parameters. Learners used 
are Linear Regression, Decision Tree, Gradient Boosting Machine and Neural Net. 

 
The TOTG model was published to Analytics Manager and Scoring Jobs where done with the use of 
the Analytics Provider ThingPredictor. Results for the predictions and the parameters used can be 
seen in table 8.2.1. Table 8.2.2 lists important fields for the scoring, which can be compared with 
figure 8.2.2. 
 

Table 8.2.1: Showing Analytics Manager Predictive Scoring Job results for five samples of Q-parameters. Total Vibration 
Acceleration TOTG is the predicted parameter. Acceleration components have been excluded for a more challenging 
prediction. 

 

RPM TOTV PERV 

 

RESV CREST KURT SKEW SPI1 SPI2 SPI3 SPI4  

Actual 
TOTG 

Predicted 
TOTG 

734.6 2.77 2.48 

 

1.24 3.35 0.056 -0.003 0.04 0.004 0.002 0.0008  0.284 0.293 

696.1 1.30 1.04 

 

0.78 3.09 -0.33 -0.06 0.02 0.002 0.001 0.0005  0.161 0.145 

0 0.87 0.77 

 

0.42 4.05 2.68 0.296 0.004 0.0002 0.0001 0.00009  0.026 0.030 

465.4 1.13 0.95 

 

0.61 4.67 2.87 -0.89 0.01 0.001 0.0009 0.0006  0.080 0.093 

785.6 1.55 1.19 

 

0.996 3.39 0.07 0.09 0.02 0.003 0.002 0.0009  0.197 0.190 
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Table 8.2.2: Showing Analytics Manager Predictive Scoring Job Important Features. The most significant features for the 

scoring is listed along with their percentage weights showing their influence on the goal. 

 

8.2.2 Total Velocity Prediction 
Predictions were also made by looking at the total vibration velocity, TOTV, of sensor 4 (measuring 

point 3) using only values from that sensor.  

Figure 8.2.4 shows the results from Signals done with total vibration velocity, TOTV, done on sensor 

4. Note that the predictive strength is lower than when comparing to acceleration in section 8.2.1 for 

parameters that are not components of the same. 

Figure 8.2.5 shows the model results for prediction on the TOTV parameter of the same sensors. 

Note the accuracy in the blue rectangle at the bottom of the figure. 

 

 

Figure 8.2.4: Signals for TOTV of sensor 4 (measuring point 3). The most important features for the goal are listed in the 
lower left frame. Note that the top two fields are components of the total velocity. 

 

 

Actual 
TOTG 

Predicted 
TOTG  

Important 
Field 1 
Name 

Important 
Field 1 
Weight 

Important 
Field 2 
Name 

Important 
Field 2 
Weight 

Important 
Field 3 
Name 

Important 
Field 3 
Weight 

0.284 0.293  SPI2 0.273 SPI1 0.228 SPI3 0.200 

0.161 0.145  SPI2 0.287 SPI1 0.247 SPI3 0.213 

0.026 0.030  SPI2 0.324 SPI1 0.280 SPI3 0.216 

0.080 0.093  SPI2 0.300 SPI1 0.262 SPI3 0.217 

0.197 0.190  SPI2 0.279 SPI1 0.241 SPI3 0.209 
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Figure 8.2.5: Scatter plot for model results of model using Total Vibration Velocity TOTV on sensor 4 (measuring point 3) as 
goal. Model training is done using only Q-parameters from the same sensor and no other V-parameters. Learners used are 
Linear Regression, Decision Tree, Gradient Boosting Machine and Neural Net. 

 

8.3 Dull and Q-parameter prediction with CSense 
The first analysis done in Proficy Troubleshooter is the calculation of a correlation matrix. The 

correlation matrix for all the features is quite large. For this reason, only a part of it will be presented 

here. The matrix is calculated from all the chosen features in the data and is therefore not directly 

dependent on a chosen goal. The correlation matrix for sensor 4 (measuring point 3) can be seen in 

table 8.3.1. Most interesting is looking at the correlations of TOTG and TOTV to the other features 

and comparing these with the results from Signals in figures 8.2.2 and 8.2.4. They show high 

correlations for the features that are ranked high in predictive strength in Signals. 

 

 

Table 8.3.1: Correlation matrix for the Q-parameters of sensor 4 (measuring point 3). Correlation with TOTG has been 

highlighted, specifically for first, second and third quartile of the noise vibration spectrum. 

 

  CREST KURT PERG PERV RESG RESV RPM SKEW SPI1 SPI2 SPI3 SPI4 TOTG TOTV 

CREST 100.00 60.93 29.75  3.87 34.08  5.50 26.80 -2.04 26.16 26.22 28.83 25.04 31.49  4.34 

KURT 60.93 100.00 -2.77 -1.37  7.28 10.99 -12.62 -38.49  2.65 -7.74 -5.48 -7.51  0.92  2.77 

PERG 29.75 -2.77 100.00 78.59 97.36 70.81 91.96  8.35 93.77 94.65 94.32 89.77 99.66 77.53 

PERV  3.87 -1.37 78.59 100.00 74.29 90.24 65.34 -1.14 86.43 67.13 67.34 63.79 77.56 99.01 

RESG 34.08  7.28 97.36 74.29 100.00 71.47 87.40  2.31 90.75 92.95 93.56 87.83 98.90 74.81 

RESV  5.50 10.99 70.81 90.24 71.47 100.00 57.49 -6.92 77.95 63.80 62.29 60.99 71.51 95.37 

RPM 26.80 -12.62 91.96 65.34 87.40 57.49 100.00 17.41 78.55 94.51 92.23 92.03 90.83 63.94 

SKEW -2.04 -38.49  8.35 -1.14  2.31 -6.92 17.41 100.00 -1.69 14.04 11.78 14.36  6.10 -3.23 

SPI1 26.16  2.65 93.77 86.43 90.75 77.95 78.55 -1.69 100.00 80.10 80.56 73.21 93.29 85.35 

SPI2 26.22 -7.74 94.65 67.13 92.95 63.80 94.51 14.04 80.10 100.00 97.72 96.51 94.58 67.30 

SPI3 28.83 -5.48 94.32 67.34 93.56 62.29 92.23 11.78 80.56 97.72 100.00 96.72 94.61 66.96 

SPI4 25.04 -7.51 89.77 63.79 87.83 60.99 92.03 14.36 73.21 96.51 96.72 100.00 89.60 64.07 

TOTG 31.49  0.92 99.66 77.56 98.90 71.51 90.83  6.10 93.29 94.58 94.61 89.60 100.00 77.06 

TOTV  4.34  2.77 77.53 99.01 74.81 95.37 63.94 -3.23 85.35 67.30 66.96 64.07 77.06 100.00 
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8.3.1 Knife Dullness Prediction 
Modelling was done with Dull as a target. Results for two different filters can be seen in figures 8.3.1 

and 8.3.2. Note the very low accuracy of the non-linear model. The rules score higher, seen in the 

lower right frame. CSense automatically divides the goal into interval and here Normal means Dull = 

false (or 0) and High means Dull = true (or 1). 

 

Figure 8.3.1: Modeling results for Dull as target and filtering out entries where RPM is zero. Model uses the sensors mounted 
on the outside of the chucks, sensors 4 and 6 (measuring points 3 and 5). Note model fit in the upper right frame. 

 

 

 

Figure 8.3.2: Modeling results for Dull as target and filtering for entries where the blade was exchanged. Model uses the 
sensors mounted on the outside of the chucks, sensors 4 and 6 (measuring points 3 and 5). Note model fit in the upper right 

frame. 
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8.3.2 Q-Parameter Prediction 
A Decision Tree for TOTG of sensor 4 (measuring point 3) can be seen in figure 8.3.3. The limits are 

set as Low = 0.125, High = 0.221 and Normal in between. 

 

Figure 8.3.3: Decision Tree for TOTG of sensor 4 (measuring point 3) as the target. SPI1 and SPI2 are the variables that are 
most significant for the value of TOTG. 
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Figure 8.3.4: Modeling results for TOTG as target for sensor 4 (measuring point 3). Note the high model fit in the upper right 
frame. 

 

Figure 8.3.4 shows modeling results for using TOTG of sensor 4 (measuring point 3) as the target. In 

figure 8.3.5 the same model’s output and actual value of the target TOTG is seen in comparison. 

 

 

Figure 8.3.5: Showing model output (blue) and actual value (red) of TOTG as result of the model in figure 8.3.4. 

 

Modeling was also done with TOTV as target for the same sensor. Results from this can be seen in 

figure 8.3.6 and the same comparison of the model output and actual value of the target is seen in 

figure 8.3.7. 
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Figure 8.3.6: Modeling results from using TOTV for sensor 4 (measuring point 3) as a target. Model fit is seen in the upper 
right frame. 

 

 

Figure 8.3.7: Showing model output (blue) and actual value (red) of TOTV as result of the model in figure 8.3.6. 
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9 Discussion 
 

9.1 Knife Prediction 
As is seen in the results, chapter 8, the prediction of whether the knife is dull or not does not 

produce adequate results. Several different learners and filters have been tried. Looking at the 

constellation that produced the best results, figures 8.1.9 and 8.1.10, an accuracy of about 0.68 for 

ROC is achieved. This implies that it guesses incorrectly about one third of the times and this is not 

good enough for online commercial use. Figure 8.1.10 implies that the model has more difficulty 

predicting when the knife is sharp. On the other hand, the results are quite similar in figure 8.1.6 

indicating that this might not be that significant. The ROC curves in figures 8.1.5 and 8.1.9 do not go 

as quickly as desired to the north part of the graph.  

Looking at important features for the prediction of dullness (figure 8.1.1) it is interesting to note that 

vibration acceleration is deemed significant. Most significant here is PERG, which is the part of the 

acceleration signal that is stationary and with a recurring pattern. It is sensitive to vibration in the 

high frequency range. That this parameter is deemed important seems logical since it is expected 

that vibration from dullness would increase slowly. Also, low frequency friction noise, SPI1, and high 

frequency friction noise, SPI4, are important. The fact that different ends of the spectra are 

implicated may suggest that one is occurring when the knife is sharp and the other when it is dull. 

This is unfortunately not possible to verify from the results given in Analytics. 

Using frequency data was even less successful, as can be seen in figure 8.1.7. This might be due to 

the batch-like nature of the data. As noted, the frequencies with the top amplitude are recorded for 

each measurement. They are not recorded in any frequency bands.  Furthermore, csv format does 

not allow easily connecting of frequencies and amplitudes in pairs. Filtering on low amplitude was 

not successful. This was due to the semi-automatic nature of Analytics Builder’s filter function, which 

removed to many entries for the low amplitude interval. 

When comparing with CSense results for Dull as target (figures 8.3.1 and 8.3.2), ThingWorx Analytics 

is much more successful. This might be due to Analytics being more configured for Boolean goals or 

perhaps those algorithms suit the data better. It might also be that the data should undergo more 

preparation in Proficy Troubleshooter, but no obvious solution presents itself. For the reasons given 

below it is, however, not prudent to make any certain conclusion about the knife predictions. 

Looking at how often samples are taken, this is not likely to have been a problem. Since the knife 

events are somewhat spread out more frequent measurements are not needed. A sample every third 

minute is likely adequate when the knife events are about three hours apart. The goal is not to 

detect damages but gradual dullness. When the samples are taken are more of a problem. As noted 

in section 3.2 the peeling cycle has several operational modes. The one that is of interest is the mode 

where actual peeling is done, and the knife is in constant contact with the log. Since there is currently 

no way of knowing which mode the data represents, predictions are made harder. Looking at RPM 

only tells if the machine is running or not, so filtering on this is likely not enough. A further idea was 

to include the number of produced veneer meters into the data and then try to model on this. The 

meter data was, however, included too late in the project for there to be enough data.  

At a late stage in the project the possibility to have a conversation with the company that makes the 

lathe was presented. They had done vibration measurements of the peeling process during research 

and development. The goal was then to develop a construction that would prevent the knife from 

vibrating due to deteriorating sharpness. This will naturally make it much more difficult to use 
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vibrations for this type of prediction and is probably one of the main reasons it does not seem to 

work. It is of course possible that they have not managed to eliminate vibrations to this extent. There 

is support in the results for this last assumption. Even though the knife predictions do not reach as 

high an accuracy as desired, guessing correctly two out of three times implicates that there is a 

discernable pattern. 

Another possible reason for the insufficient prediction is the placements of the sensors. Initially, it 

was believed that several sensors where fitted on or at least very close to the knife. This was, 

however, not the case. The sensor placement is optimized for other measurements concerning 

bearing and machine part damages. Combining this with the goal of reducing dullness vibration it is 

perhaps not reasonable to expect better results. 

One last thing to consider is the assumption of dullness. Since there is no trial data for when the knife 

is confirmed to be dull the assumption that it is dull before an exchange had to be done. This 

assumption might not be entirely true and it is possible that the distance set is well before the knife 

is measurably dull. One of the operators mentioned during the site visit that at a previous production 

plant he worked at, the limit for exchanging the veneer lathe knife was 30’000 produced meters, 

which is twice the length compared to the exchange limit in this case. This casts further doubt on the 

assumption that the knife actually is dull when exchanged. 

9.2 Q-parameter Prediction 
The predictions on the Q-parameters work a lot better than the Dull predictions. This is natural since 

the vibration measurements are likely connected to some degree, as implicated by the correlation 

matrix from CSense (table 8.3.1) and Analytics Builder Signals (figures 8.2.2 and 8.2.4). The predictive 

strength implicated in the Signals figures are much higher than for Dull as the goal. It is quite 

interesting that the modeling for TOTG is much more successful than for TOTV, figure 8.2.3 vs 8.2.5. 

This is a bit unexpected since the sensors are vibration velocity and therefore one would expect this 

to have an effect in all the parameters. This means that TOTG and not TOTV is the derived 

parameter. Signals, however, indicate higher predictive strengths for the features in relation to 

TOTG. When comparing to the results of Signals for TOTG and TOTV, the better modeling outcomes 

for TOTG is logical. For TOTV, perhaps overfitting to the data might be a problem. 

When looking at important features, Signals in figure 8.2.2 and scoring results in table 8.2.2, it is 

prominent that the two features with the highest predictive strength are also noted as the two most 

important fields for the scoring, if in reverse order. The reversion is explained by the fact that the 

predictive strengths and weights are close to each other. 

In comparison to modeling done in CSense, ThingWorx Analytics produces less successful results for 

Q-parameter prediction. Analytics modeling is perhaps more directed at binary and categorical goals, 

since this is the type of goal used in Analytics Builder tutorials. CSense was much more successful in 

relation to that type of goal. This is most likely due to CSense being very useful for modeling signals 

and using TOTG and TOTV as target can be seen as modeling them as signals from the other 

parameters. When it comes to important features the two programs are in agreement, which can be 

seen in scoring result for important features in table 8.2.2 and in the correlations for TOTG in table 

8.3.1. 

  

9.3 ThingWorx Evaluation 
The claim that ThingWorx Analytics “…eliminates the need for developer or user expertise in data 

modeling, complex mathematics, or machine learning” (PTC 2017c p2) is not entirely true. Processing 
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the data requires some data science knowledge, but arguably process experience is perhaps even 

more important. Furthermore, some understanding of the machine learning and statistical 

algorithms used is needed to configure modeling properly. It does, however, require less knowledge 

than CSense and certainly less than most numerical and statistical computation tools.  

The integration between the main ThingWorx platform and ThingWorx Analytics is quite good but 

still needs more development, especially for the step when one wants to export data from 

ThingWorx Foundation to Analytics. Ideally, ThingWorx Foundation should be able to supply Analytics 

Builder with the data and data configuration directly. This could be done via the Data Storage 

Containers using functionality in the composer, such as Services. Furthermore, Analytics Builder 

should include more possibilities for preprocessing the data. Visualization of the data can be handled 

by the main ThingWorx platform. 

Once the model is trained and published the integration is much better. The fact that there are 

Things and Thing Templates that can be auto-generated for the connection between Analytics 

Manager and Foundation, speeds up the process significantly. The need for the ThingPredictor for 

scoring jobs is, however, a bit cumbersome. This functionality should optimally be included in the 

Manager and not run in a standalone process. It is also a great benefit that all sorts of analysis 

providers can be connected to ThingWorx. Another plus is that once a model has been developed a 

connection to Analytics Server is not necessary. This allows ThingWorx developers to run scoring jobs 

on the model and use this in their application by running ThingWorx Foundation and the Analytics 

Extension alone.  

When it comes to visualization and process overview, CSense provides a lot more than ThingWorx 

out of the box. It is possible to achieve the same visual aids and variable manipulation in ThingWorx, 

but this has to be developed by the application developer. Conversely, this of course allows for a 

much more tailored process monitoring application. As always there is a tradeoff between flexibility 

and preexisting solutions.  

The failed knife prediction cannot be blamed on ThingWorx Analytics or CSense.  As noted there are 

many other more significant reasons for not achieving high enough model accuracy. Looking at the 

TOTG prediction it seems ThingWorx can be a good tool for process monitoring if data with proper 

labels are available. Labeling here refers to what type of operational mode or situation the data is 

taken from. This will establish a basis for comparison.  When certain patterns appear, the program 

can tell where the process is and, more importantly, where it is going. The old saying “garbage in 

garbage out” is important to keep in mind. It is not reasonable to expect meaningful analytics results 

if you do not have the right data. CSense does obtain a higher accuracy for the Q-parameter 

prediction, but with more preprocessing of the data and more tweaking of learner and modeling 

parameters this gap will close. 

 

9.4 Future Development 
One of the most obvious improvements that could be made is putting a sensor on the floating knife 

carrier. This would give sensor readings as close as possible to the point of interest. Putting sensors 

directly on the knife is probably not feasible due to the process nature. They could be damaged by 

the peeling and logs entering and leaving the lathe.  Also, there is a lot of dirt and wood chips this 

close to the knife. 

The fact that the operational state of the lathe is not registered with the samples is a major problem. 

If it was possible to filter out only entries where actual peeling is being done it is likely that a higher 
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accuracy could be achieved. This would give data that primarily holds entries where the knife is in 

contact with the log. This was discussed during the project, but unfortunately the measuring system 

was not able to sync the PLC’s signals for operational mode with the sensor data. The PLC readings 

would only be useful if it is possible to make sure that they are taken at the same time as the sensor 

readings. 

The abovementioned problem of assuming when the knife is dull is another source for error. To 

produce optimal models, specific trial runs should ideally be done where data can be recorded for all 

interesting operational modes. When dealing with a production line that runs 24 hours and 7 days a 

week, this is of course not easy to organize. One also has to consider damages and costs to the 

machine being used in undesirable operational modes. There is a possible workaround concerning 

this. If it was possible to somehow measure the sharpness of the knifes directly, this could be done 

on the knifes that have been removed after an exchange. This could then be entered into the knife 

event data and perhaps also be related to the produced meters signal.  

It is, however, worth considering if the prediction method is viable for knife maintenance. Since the 

wood type used is fairly constant the use of produced length is perhaps the best in relation to cost-

benefit. Other types of analysis, such as on the produced veneer, might also prove more successful 

for knife state predictions. If the desire is to automate the whole process more development of the 

manual aspects of the peeling needs to be handled. Using produced distance is, however, not really a 

hindrance to this. 

When it comes to the IIoT platform ThingWorx, and ThingWorx Analytics in particular, it is constantly 

being refined by PTC. This project uses version 8.1 but in the moment of writing a version 8.2 and 

8.2.1 has been released. The area of connected industrial devices is only likely to grow and this type 

of process monitoring with it. 
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10 Conclusions 
 

The study exemplifies many of the challenges and opportunities of using industrial data for 

monitoring and predictive maintenance. Trying to predict the status of the veneer knife with high 

accuracy ultimately proved to be a failure, but the problem lies more with the data collection than 

the tools and methods of analysis. It is important to both collect data from the right place and make 

sure that the data contains the information needed. For the lathe neither of these are really fulfilled. 

The measurements are done relatively far away from the desired point of monitoring, and type of 

measurements taken are not ideal for the monitoring, due to the design of the machine. The design 

of the lathe is of course a huge hindrance to the predictions. Nevertheless, the reached accuracy of 

0.68 would imply more than random guessing and the improvements stated in section 9.4 are likely 

to lead to more successful results. 

The tests done on the vibration parameters do imply that this type of setup can be successfully used 

for monitoring. More comprehensive and properly labeled data is needed, but it is very likely that 

ThingWorx and ThingWorx Analytics could be used to monitor a process and give predictions 

concerning where it is headed.  

Another aspect is having and using the right tools. When it came to the true or false classification of 

whether the knife is dull or sharp, Analytics performed a lot better. On the other hand, when trying 

to model one of the Q-parameters as a signal CSense was more successful. This is especially true for 

the velocity vibration parameter. Quite naturally, all tools for analysis have strengths and weaknesses 

and it is up to the developers using these to apply them in the right places. 

Despite the inability to make knife dullness predictions as accurately as desired, the study shows the 

potential for applying IoT to industrial problems. Being able to not only monitor where a process is at 

currently, but also use that information to discern where the process is going is very valuable. When 

smart connected machines can ‘talk’ to each other the possibility for automation grows far beyond 

what is conceivable when simply displaying parameter values to an operator. The Industrial Internet 

of Things is still young but will only get larger and is predicted to play an important part in the next 

industrial revolution. 
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